Rose Maths

This policy has been largely adapted from the White Rose Maths Calculation Policy and shows the progression in calculation for each year group in line with the National Curriculum. Different manipulatives and pictoral representations have been chosen to fit our school and to provide continuity and progression from our pupils' previous learning. Manipulatives and pictoral representations have been included so pupils can deepen their understanding of these mathematical concepts. This will support pupils in understanding and using the formal methods of calculation.
Pupils need to be able to apply written calculation skills in order to:

- Support, record and explain mental calculation
- Keep track of steps in longer tasks
- Work out calculations that are too difficult to perform mentally
- Provide proof or explanation when reasoning and problem solving
- Communicate their mathematical thinking to others
- Become better mathematicians

Implementation of this policy will be monitored by the school's Mathematics Leader R.Tabram. The policy will be reviewed annually.

${ }^{\mathrm{E}} \mathrm{C}_{\mathrm{J}}^{\mathrm{S}}$ Part-Whole Model

$$
\begin{array}{ll}
7=4+3 & 7-3=4 \\
7=3+4 & 7-4=3
\end{array}
$$

Benefits

This part-whole model supports children in their understanding of aggregation and partitioning. Due to its shape, it can be referred to as a cherry part-whole model.

When the parts are complete and the whole is empty, children use aggregation to add the parts together to find the total.

When the whole is complete and at least one of the parts is empty, children use partitioning (a form of subtraction) to find the missing part.

Part-whole models can be used to partition a number into two or more parts, or to help children to partition a number into tens and ones or other place value columns.

In KS2, children can apply their understanding of the part-whole model to add and subtract fractions, decimals and percentages.

Cubes

White Rose Maths

$$
7=4+3
$$

$7=3+4$

$7-3=4$

$7-3=4$

Benefits

Cubes can be useful to support children with the addition and subtraction of one-digit numbers.

When adding numbers, children can see how the parts come together to make a whole. Children could use two different colours of cubes to represent the numbers before putting them together to create the whole.

When subtracting numbers, children can start with the whole and then remove the number of cubes that they are subtracting in order to find the answer. This model of subtraction is reduction, or take away.

Cubes can also be useful to look at subtraction as difference. Here, both numbers are made and then lined up to find the difference between the numbers.

Cubes are useful when working with smaller numbers but are less efficient with larger numbers as they are difficult to subitise and children may miscount them.

White

Benefits

The single bar model is another type of a part-whole model that can support children in representing calculations to help them unpick the structure.

Cubes and counters can be used in a line as a concrete representation of the bar model.

Discrete bar models are a good starting point with smaller numbers. Each box represents one whole.

The combination bar model can support children to calculate by counting on from the larger number. It is a good stepping stone towards the continuous bar model.

Continuous bar models are useful for a range of values. Each rectangle represents a number. The question mark indicates the value to be found.

In KS2, children can use bar models to represent larger numbers, decimals and fractions.

Discrete

$$
7+3=10
$$

4

Continuous

$7-3=4$
$2,394-1,014=1,380$

Benefits

The multiple bar model is a good way to compare quantities whilst still unpicking the structure.

Two or more bars can be drawn, with a bracket labelling the whole positioned on the right hand side of the bars. Smaller numbers can be represented with a discrete bar model whilst continuous bar models are more effective for larger numbers.

Multiple bar models can also be used to represent the difference in subtraction. An arrow can be used to model the difference.

When working with smaller numbers, children can use cubes and a discrete model to find the difference. This supports children to see how counting on can help when finding the difference.

Ten Frames (within 10)

$4+3=7$
$3+4=7$
$7-3=4$
$7-4=3$

4 is a part.

 3 is a part. 7 is the whole.
Benefits

When adding and subtracting within 10 , the ten frame can support children to understand the different structures of addition and subtraction.

Using the language of parts and wholes represented by objects on the ten frame introduces children to aggregation and partitioning.
Aggregation is a form of addition where parts are combined together to make a whole. Partitioning is a form of subtraction where the whole is split into parts. Using these structures, the ten frame can enable children to find all the number bonds for a number.

Children can also use ten frames to look at augmentation (increasing a number) and take-away (decreasing a number). This can be introduced through a first, then, now structure which shows the change in the number in the 'then' stage. This can be put into a story structure to help children understand the change e.g. First, there were 7 cars. Then, 3 cars left. Now, there are 4 cars.

Ten Frames (within 20)

Benefits

When adding two single digits, children can make each number on separate ten frames before moving part of one number to make 10 on one of the ten frames. This supports children to see how they have partitioned one of the numbers to make 10, and makes links to effective mental methods of addition.

When subtracting a one-digit number from a two-digit number, firstly make the larger number on 2 ten frames. Remove the smaller number, thinking carefully about how you have partitioned the number to make 10, this supports mental methods of subtraction.

When adding three single-digit numbers, children can make each number on 3 separate 10 frames before considering which order to add the numbers in. They may be able to find a number bond to 10 which makes the calculation easier. Once again, the ten frames support the link to effective mental methods of addition as well as the importance of commutativity.

White

$$
5+3=8
$$

Benefits

Labelled number lines support children in their understanding of addition and subtraction as augmentation and reduction.

Children can start by counting on or back in ones, up or down the number line. This skill links directly to the use of the number track.

Progressing further, children can add numbers by jumping to the nearest 10 and then jumping to the total. This links to the making 10 method which can also be supported by ten frames. The smaller number is partitioned to support children to make a number bond to 10 and to then add on the remaining part.

Children can subtract numbers by firstly jumping to the nearest 10. Again, this can be supported by ten frames so children can see how they partition the smaller number into the two separate jumps.
$35+37=72$

$35+37=72$

$72-35=37$

Benefits

Blank number lines provide children with a structure to add and subtract numbers in smaller parts.

Developing from labelled number lines, children can add by jumping to the nearest 10 and then adding the rest of the number either as a whole or by adding the tens and ones separately.

Children may also count back on a number line to subtract, again by jumping to the nearest 10 and then subtracting the rest of the number.

Blank number lines can also be used effectively to help children subtract by finding the difference between numbers. This can be done by starting with the smaller number and then counting on to the larger number. They then add up the parts they have counted on to find the difference between the numbers.

Base 10/Dienes (addition)

38

61

1

Benefits

Using Base 10 or Dienes is an effective way to support children's understanding of column addition. It is important that children write out their calculations alongside using or drawing Base 10 so they can see the clear links between the written method and the model.

Children should first add without an exchange before moving on to addition with exchange.. The representation becomes less efficient with larger numbers due to the size of Base 10. In this case, place value counters may be the better model to use.

When adding, always start with the smallest place value column. Here are some questions to support children. How many ones are there altogether?
Can we make an exchange? (Yes or No)
How many do we exchange? (10 ones for 1 ten, show exchanged 10 in tens column by writing 1 in column) How many ones do we have left? (Write in ones column) Repeat for each column.

Benefits

Using Base 10 or Dienes is an effective way to support children's understanding of column subtraction. It is important that children write out their calculations alongside using or drawing Base 10 so they can see the clear links between the written method and the model.

Children should first subtract without an exchange before moving on to subtraction with exchange. When building the model, children should just make the minuend using Base 10, they then subtract the subtrahend. Highlight this difference to addition to avoid errors by making both numbers. Children start with the smallest place value column. When there are not enough ones/tens/hundreds to subtract in a column, children need to move to the column to the left and exchange e.g. exchange 1 ten for 10 ones. They can then subtract efficiently.
This model is efficient with up to 4-digit numbers. Place value counters are more efficient with larger numbers and decimals.

Place Value Counters (addition)

-
.

Benefits

Using place value counters is an effective way to support children's understanding of column addition. It is important that children write out their calculations alongside using or drawing counters so they can see the clear links between the written method and the model.

Children should first add without an exchange before moving on to addition with exchange. Different place value counters can be used to represent larger numbers or decimals. If you don't have place value counters, use normal counters on a place value grid to enable children to experience the exchange between columns.

When adding money, children can also use coins to support their understanding. It is important that children consider how the coins link to the written calculation especially when adding decimal amounts.

White

Hundreds	Tens	Ones	$\begin{array}{r} 642 \\ -207 \\ \hline 445 \end{array}$
$\varnothing \text { ØOO૦ø }$			

Benefits

Using place value counters is an effective way to support children's understanding of column subtraction. It is important that children write out their calculations alongside using or drawing counters so they can see the clear links between the written method and the model.

Children should first subtract without an exchange before moving on to subtraction with exchange. If you don't have place value counters, use normal counters on a place value grid to enable children to experience the exchange between columns.

When building the model, children should just make the minuend using counters, they then subtract the subtrahend. Children start with the smallest place value column. When there are not enough ones/tens/hundreds to subtract in a column, children need to move to the column to the left and exchange e.g. exchange 1 ten for 10 ones. They can then subtract efficiently.

White
Rose
Maths

Addition

Base 10 and place value counters are the most effective manipulatives when adding numbers with up to 3 digits.

Ensure children write out their calculation alongside any concrete resources so

$265+164=429$

they can see the links to the written column method.

Plain counters on a place value grid can also be used to support learning.

Year 5: Add numbers with more than 4 digits

$$
104,328+61,731=166,059
$$

1

Place value counters or plain counters on a place value grid are the most effective concrete resources when adding numbers with more than 4 digits.

At this stage, children should be encouraged to work in the abstract, using the column method to add larger numbers efficiently.

For Year 6, there are no additional objectives for subtraction, therefore these methods will be used.

Subtraction

Base 10 and place value counters are the most effective manipulative when subtracting numbers with up to 3 digits.

Ensure children write out their calculation alongside any concrete resources so they can see the links to the written column method.

Plain counters on a place value grid can also be used to support learning.

Year 4: Subtract numbers with up to 4 digits

$$
4,357-2,735=1,622
$$

Thousands	Hundreds	Tens	Ones

Base 10 and place value counters are the most effective manipulatives when subtracting numbers with up to 4 digits.

Ensure children write out their calculation alongside any concrete resources so they can see the links to the written column method.

Plain counters on a place value grid can also be used to support learning.

For Year 6, there are no additional objectives for addition, therefore these methods will be used.

For Year 6, there are no additional objectives for addition, therefore these methods will be used.

Multiplication and Division

Benefits

Artays support children's understanding of multiplication as repeated addition. Arrays also support the understanding of commutativity.

Children can build multiplications in a row using counters, oirdes or dots in an array.

When dividing, arrays support children's understanding of division as grouping. Groups can be oirded.

Bar Model
White
Rose
Maths

$$
\begin{aligned}
& 3 \times 7=21 \\
& 7 \times 3=21
\end{aligned}
$$

$$
21 \div 7=3
$$

Girls
3

Benefits

Children can use the single bar model to represent multiplication as repeated addition. They could use counters, cubes or dots within the bar model to support calculation before moving on to placing digits into the bar model to represent the multiplication.

Division can be represented by showing the total of the bar model and then dividing the bar model into equal groups.

It is important when solving word problems that the bar model represents the problem.

Sometimes, children may look at scaling problems. In this case, more than one bar model is useful to represent this type of problem, e.g. There are 3 girls in a group. There are 5 times more boys than girls. How many boys are there?
The multiple bar model provides an opportunity to compare the groups. Rese Maths

$4 \times 5=20$
$5 \times 4=20$

$$
20 \div 4=5
$$

Benefits

Labelled number lines are useful to support children to count in multiples, forwards and backwards as well as calculating single-digit multiplications.

When multiplying, children start at 0 and then count on to find the product of the numbers.
When dividing, start at the number they are dividing and the count back in jumps of the number they are dividing by until they reach 0 .
Children record how many jumps they have made to find the answer to the division.

Labelled number lines can be useful with smaller multiples, however they become inefficient as numbers become larger due to the required size of the number line.

A blue car travels 12 miles.
A red car 4 times less.
How far does the red car travel?

Benefits

Children can use blank number lines to represent scaling as multiplication or division.

Blank number lines with intervals can support children to represent scaling accurately. Children can label intervals with multiples to calculate scaling problems.

Blank number lines without intervals can also be used for children to represent scaling.

Benefits

Using Base 10 or Dienes is an effective way to support children's understanding of column multiplication. It is important that children write out their calculation alongside the equipment so they can see how the concrete and written representations match.

As numbers become larger in multiplication or the amounts of groups becomes higher, Base 10 / Dienes becomes less efficient due to the amount of equipment and number of exchanges needed.

$$
68 \div 2=34
$$

Benefits

Using Base 10 or Dienes is an effective way to support children's understanding of division.

When numbers become larger, it can be an effective way to move children from representing numbers as ones towards representing them as tens and ones in order to divide. Children can then share the Base 10/ Dienes between different groups e.g. by drawing circles or by rows on a place value grid.

When they are sharing, children start with the larger place value and work from left to right. If there are any left in a column, they exchange e.g. one ten for ten ones. When recording, encourage children to use the partwhole model so they can consider how the number has been partitioned in order to divide. This will support them with mental methods.

(1)
 Place Value Counters (multiplication)

White

Benefits

Using place value counters is an effective way to support children's understanding of column multiplication. It is important that children write out their calculation alongside the equipment so they can see how the concrete and written match.

As numbers become larger in multiplication or the amounts of groups becomes higher, Base 10 / Dienes becomes less efficient due to the amount of equipment and number of exchanges needed The counters should be used to support the understanding of the written method rather than support the arithmetic.

Place Value Counters (division)
White

1223
44892

Benefits

Using place value counters is an effective way to support children's understanding of division.

When working with smaller numbers, children can use place value counters to share between groups. They start by sharing the larger place value column and work from left to right. If there are any counters left over once they have been shared, they exchange the counter e.g. exchange one ten for ten ones. This method can be linked to the part-whole model to support children to show their thinking.

Place value counters also support children's understanding of short division by grouping the counters rather than sharing them. Children work from left to right through the place value columns and group the counters in the number they are dividing by. If there are any counters left over after they have been grouped, they exchange the counter e.g. exchange one hundred for ten tens.

White
Rose
Maths

Multiplication

Year 3: multiply two-digit numbers by one-digit numbers, progressing to formal written methods

$34 \times 5=170$

	H	T	O	
		3	4	
\times			5	
	1	7	0	
2				

Informal methods and the expanded method are used in Year 3 before moving on to the short multiplication method in Year 4.

Place value counters should be used to support the understanding of the method rather than supporting the multiplication, as children should use times table knowledge.

Year 5: multiply numbers up to four-digits by one-digit numbers

$1,826 \times 3=5,478$

	Th	H	T	O
	1	8	2	6
\times				3
	5	4	7	8
2	1			

When multiplying 4digit numbers, place value counters are the best manipulative to use to support children in their understanding of the formal written method.
If children are multiplying larger numbers and struggling with their times tables, encourage the use of multiplication grids so children can focus on the use of the written method.
$22 \times 31=682$

$234 \times 32=7,488$

Th	H	T	O
	2	3	4
\times		3	2
	4	6	8
7	0	2	0
7	4	8	8
	$(\times 30)$		

Consider where
exchanged digits are
placed and make
sure this is consistent.

$$
2,739 \times 28=76,692
$$

Year 6: multiply one-digit numbers with up to two decimal places by whole numbers

$3.3 \times 3=9.9 \mathrm{~km}$

Tens	ones	tentrs
	(1) (1)	$\bigcirc \bigcirc$
	(1) (1)	$\bigcirc \bigcirc$
	(1) (1)	$\bigcirc \bigcirc$

\times| 2 | $1 \cdot 3$ | | |
| :---: | :---: | :---: | :---: |
| \times | 4 | | |
| 8 | $5 \cdot 2$ | | |
| | 1 | | |

Rose
Maths

Division

Year 3: divide two-digit numbers by a one-digit number, progressing to formal

written methods

Tens	Ones
(10)	10
10	1

$48 \div 2=24$

When dividing larger numbers, children can use manipulatives that allow them to partition into tens and ones.

Straws, Base 10 and place value counters can all be used to share numbers into equal groups.

Part-whole models can provide children with a clear written method that matches the concrete representation.

Year 5: divide numbers up to four-digits by a one-digit number using the formal

$52 \div 4=13$

When using the short division method, children use grouping. Starting with the largest place value, they group by the divisor.

Language is important here. Children should consider 'How many groups of 4 tens can we make?' and 'How many groups of 4 ones can we make?'

Remainders can also be seen as they are left ungrouped.

Year 5: divide numbers up to four-digits by a one-digit number using the formal written method of short division

		2	1	4
	4	8	5	${ }^{1} 6$

$856 \div 4=214$

Year 5: divide numbers up to four-digits by a one-digit number using the formal written method of short division

$8,532 \div 2=4,266$

When children begin to divide up to 4digits by 2-digits, written methods become the most accurate as concrete and pictorial representations become less effective. Children can write out multiples to support their calculations with larger remainders. Children will also solve problems with remainders where the quotient can be rounded as appropriate.

Year 6: divide numbers up to four-digits by a two-digit number (long division)

		0	3	6		
1	2	4	3	2		
	-	3	6	0		
			7	2		
	-		7	2		
				$12 \times 1=12$ 12×20 12×2		$12 \times 3=34$
:---						
$12 \times 4=48$						
$12 \times 5=60$						
$12 \times 6=72$						
$12 \times 7=84$						
$12 \times 8=96$						
$12 \times 7=108$						
$12 \times 10=120$						

$7,335 \div 15=489$

$432 \div 12=36$

	0	4	8	9	($\times 400$	$1 \times 15=15$
15	7	3	3	5		
-	6	0	0	0		0
	1	3	3	5		$3 \times 15=45$
-	1	2	0	0	($\times 80$)	$4 \times 15=60$
		1	3	5		$5 \times 15=75$
-		1	3	5	($\times 9$)	$10 \times 15=150$
				0		

Children can also divide by 2-digit numbers using long division.

Children can write out multiples to support their calculations with larger remainders.

Children will also solve problems with remainders where the quotient can be rounded as appropriate.

